欧美福利在线播放_免费在线观看羞羞视频_加勒比色老久久爱综合网_性一交一乱一区二区洋洋av_国产麻豆麻豆_国产精品一线天粉嫩av_国产精品天美传媒入口_午夜a一级毛片亚洲欧洲_精品久久久久久久大神国产_四虎影视在线播放

課程目錄: 會計(jì)學(xué)數(shù)據(jù)分析基礎(chǔ) II培訓(xùn)

4401 人關(guān)注
(78637/99817)
課程大綱:

會計(jì)學(xué)數(shù)據(jù)分析基礎(chǔ) II培訓(xùn)

 

 

Course Orientation

You will become familiar with the course, your classmates,

and our learning environment. The orientation will also help you obtain the technical skills required for the course.

Module 1: Introduction to Machine Learning

This module provides the basis for the rest of the course by introducing the basic concepts behind machine learning,

and, specifically, how to perform machine learning by using Python and the scikit learn machine learning module.

First, you will learn how machine learning and artificial intelligence are disrupting businesses.

Next, you will learn about the basic types of machine learning and how to leverage these algorithms in a Python script.

Third, you will learn how linear regression can be considered a machine learning problem with parameters that must be determined

computationally by minimizing a cost function. Finally, you will learn about neighbor-based algorithms,

including the k-nearest neighbor algorithm, which can be used for both classification and regression tasks.

 

Module 2: Fundamental Algorithms

This module introduces several of the most important machine learning algorithms: logistic regression, decision trees,

and support vector machine. Of these three algorithms, the first, logistic regression,

is a classification algorithm (despite its name). The other two,

however, can be used for either classification or regression tasks. Thus,

this module will dive deeper into the concept of machine classification,

where algorithms learn from existing, labeled data to classify new,

unseen data into specific categories; and, the concept of machine regression,

where algorithms learn a model from data to make predictions for new,

unseen data. While these algorithms all differ in their mathematical underpinnings,

they are often used for classifying numerical, text, and image data or performing regression in a variety of domains.

This module will also review different techniques for

quantifying the performance of a classification and regression algorithms and how to deal with imbalanced training data.

 

Module 3: Practical Concepts in Machine Learning

 

This module introduces several important and practical concepts in machine learning.

First, you will learn about the challenges inherent in applying data analytics (and machine learning in particular) to real world data sets.

This also introduces several methodologies that you may encounter in the future that dictate how to approach,

tackle, and deploy data analytic solutions.

Next, you will learn about a powerful technique to combine the predictions

from many weak learners to make a better prediction via a process known as ensemble learning.

Specifically, this module will introduce two of the most popular ensemble learning

techniques: bagging and boosting and demonstrate how to employ them in a Python data

analytics script. Finally, the concept of a machine learning pipeline is introduced,

which encapsulates the process of creating, deploying, and reusing machine learning models.

Module 4: Overfitting & Regularization

 

This module introduces the concept of regularization, problems it can cause in machine learning analyses,

and techniques to overcome it. First, the basic concept of overfitting is presented along with ways to identify its occurrence. Next,

the technique of cross-validation is introduced,

which can mitigate the likelihood that overfitting can occur. Next, the use of cross-validation to identify the optimal parameters for a machine

learning algorithm trained on a given data set is presented. Finally, the concept of regularization,

where an additional penalty term is applied when determining the best machine learning model parameters,

is introduced and demonstrated for different regression and classification algorithms.

Module 5: Fundamental Probabilistic Algorithms

This module starts by discussing practical machine learning workflows that are deployed in production environments,

which emphasizes the big picture view of machine learning.

Next this module introduces two additional fundamental algorithms: naive Bayes and Gaussian

Processes. These algorithms both have foundations in probability theory but operate under very different

assumptions. Naive Bayes is generally used for classification tasks, while Gaussian Processes are generally used for regression tasks.

This module also discusses practical issues in constructing machine learning workflows.

 

Module 6: Feature Engineering

 

This module introduces an important concept in machine learning,

the selection of the actual features that will be used by a machine learning

algorithm. Along with data cleaning, this step in the data analytics process is extremely important,

yet it is often overlooked as a method for improving the overall performance of an analysis.

This module beings with a discussion of ethics in machine learning,

in large part because the selection of features can have (sometimes) non-obvious impacts on the final performance of an algorithm.

This can be important when machine learning is applied to data in a regulated industry or when the improper application of an algorithm

might lead to discrimination. The rest of this module introduces different techniques for either selecting the best features in a data set,

 

Module 7: Introduction to Clustering

This module introduces clustering, where data points are assigned to larger groups of points based on some specific property,

such as spatial distance or the local density of points. While humans often find clusters visually with ease in given data sets, computationally the problem is more challenging.

This module starts by exploring the basic ideas behind

this unsupervised learning technique, as well as different areas in which clustering can be used by businesses. Next,

one of the most popular clustering techniques, K-means, is introduced. Next the density-based DB-SCAN technique is introduced. This module

concludes by introducing the mixture models technique for probabilistically assigning points to clusters.

or the construction of new features from the existing set of features.

Module 8: Introduction to Anomaly Detection

This module introduces the concept of an anomaly, or outlier,

and different techniques for identifying these unusual data points. First,

the general concept of an anomaly is discussed and demonstrated in the business community via the detection of fraud,

which in general should be an anomaly when compared to normal customers or operations.

Next, statistical techniques for identifying outliers are introduced, which often involve simple

descriptive statistics that can highlight data that are sufficiently far from the norm for a given data set. Finally,

machine learning techniques are reviewed that can either classify outliers or identify

points in low density (or outside normal clusters) areas as potential outliers.

 

aiai久久| jizz18女人高潮| 夜夜躁很很躁日日躁麻豆| 精品日本12videosex| 欧美高清在线一区| 久久影院在线观看| 国产男女免费视频| 国产美女www| 女同性一区二区三区人了人一| 伊人性伊人情综合网| 97在线看免费观看视频在线观看| 任你操这里只有精品| 亚洲综合一区中| 狠狠综合久久| 欧美日韩在线播放三区四区| 亚洲最大福利视频网| 欧美中文字幕一区| 久久久女女女女999久久| 凹凸日日摸日日碰夜夜爽1| 在线观看黄色国产| 亚洲精品一二| 欧美日韩一本到| 国产日韩一区二区三区| 日韩欧美视频免费观看| 卡通动漫国产精品| 国产精品电影院| 97精品国产97久久久久久春色| 久久久久久久久久久久91| 精品毛片一区二区三区| 丝袜美腿一区二区三区| 精品国内片67194| 亚洲一区二区三区午夜| 日韩欧美一区二区一幕| 999精品一区| 精品国产91久久久久久老师| 国产主播在线一区| 国产熟妇搡bbbb搡bbbb| 亚洲国产视频二区| 国产精品进线69影院| 国产91av在线| 国产精品入口麻豆| 国产精品久久久久久久久久辛辛 | 99热都是精品| 国产精品一区无码| 亚洲经典在线| 日韩午夜在线播放| 一本久道久久综合狠狠爱亚洲精品| 国产成人免费观看视频| 欧美色图首页| 91精品国产美女浴室洗澡无遮挡| 欧美午夜精品理论片a级大开眼界| 久久久久久久久久久97| 亚洲91久久| 欧美日韩日日骚| 日韩视频在线观看国产| 一级黄色免费网站| 香蕉亚洲视频| 日韩成人免费视频| 每日在线观看av| 内射后入在线观看一区| 成人精品视频一区| 久久久久久久久久久免费精品| 五月天婷婷影视| 亚洲人体在线| 亚洲欧美一区二区不卡| 成人久久一区二区三区| 999久久久国产| 欧美丰满老妇| 欧美日韩黄色一区二区| 亚洲精品一区二区三区蜜桃久| www.日韩一区| 天堂资源在线中文精品| 亚洲午夜久久久影院| av动漫在线观看| 亚洲1234区| 国产欧美精品区一区二区三区| 日韩av色综合| 手机免费观看av| 国产精品久久久久久久| 91精品黄色片免费大全| 成人在线免费高清视频| 日本精品久久久久| 久久亚洲私人国产精品va媚药| 97在线观看视频| av中文字幕免费观看| 精品国产aⅴ| 欧美日韩国产综合视频在线观看| 黄色免费高清视频| 亚洲第一天堂网| 久久这里都是精品| 国产精品女人网站| 午夜爱爱毛片xxxx视频免费看| 女生裸体视频一区二区三区| 精品成人一区二区三区四区| 无码人妻丰满熟妇区毛片18| 97成人超碰| 亚洲精品亚洲人成人网| 精品一区二区久久久久久久网站| 无码人妻久久一区二区三区不卡| 开心九九激情九九欧美日韩精美视频电影 | 亚洲精品一区二区在线观看| 国模吧无码一区二区三区| 不卡亚洲精品| 一区二区三区四区在线免费观看| 国产日韩三区| 一区二区自拍偷拍| 岛国精品在线观看| 国产精品九九久久久久久久| 加勒比婷婷色综合久久| 欧美亚洲在线| 大胆人体色综合| 国产精品无码一区二区三区免费| 91亚洲国产高清| 亚洲精品二三区| 亚洲精品免费一区亚洲精品免费精品一区 | 中文国产成人精品久久一| 麻豆精品国产传媒| 红桃成人av在线播放| 精品日韩99亚洲| 五月婷婷狠狠操| 精品福利一区| 在线播放中文字幕一区| 日韩欧美视频网站| 东京久久高清| 欧美人牲a欧美精品| 成人一区二区免费视频| 日本免费在线一区| 欧美日韩精品在线视频| 欧美a级黄色大片| 无人区在线高清完整免费版 一区二| 亚洲视频免费看| 日本一区精品| 天天干天天干天天干| 亚洲久本草在线中文字幕| 日韩免费三级| 欧美电影免费观看| 午夜精品久久久| 日韩精品第1页| 四虎国产精品免费久久| 欧美性感一区二区三区| 国产肥臀一区二区福利视频| 国产精品x8x8一区二区| 欧美一二三区精品| 99九九精品视频| 91欧美在线| 中文字幕欧美国内| 亚洲色成人网站www永久四虎| 亚洲美洲欧洲综合国产一区| 欧美成人免费一级人片100| 欧美另类z0zx974| 午夜亚洲性色视频| 8x海外华人永久免费日韩内陆视频| 久久久久久久久毛片| 韩国成人精品a∨在线观看| 国产美女主播一区| 亚洲天堂网视频| 国产精品久久久久影视| 亚洲激情一区二区三区| 精品国产美女a久久9999| 欧美日韩一区二区三区不卡| 人妻丰满熟妇av无码区app| 小说区图片区色综合区| 亚洲欧美国产精品专区久久| 大地资源二中文在线影视观看| 一本色道88久久加勒比精品| 国语自产精品视频在线看一大j8| 国产一级生活片| 成人国产亚洲欧美成人综合网| 成人午夜电影免费在线观看| 欧美一区二区公司| 色综合一个色综合亚洲| 麻豆av免费在线| 成人羞羞网站入口免费| 日韩一区视频在线| 希岛爱理中文字幕| 高清国产一区二区三区| 国产在线观看一区| 欧美亚洲大片| 欧美丰满美乳xxx高潮www| 久久久精品视频国产| 狠狠色狠狠色综合日日tαg| 欧美又大又硬又粗bbbbb| 日韩国产成人在线| 日韩毛片精品高清免费| 2019日韩中文字幕mv| 任你弄精品视频免费观看| 亚洲人成毛片在线播放| 欧美激情精品久久久久久免费 | 日b视频在线观看| 久久av一区| 成人美女免费网站视频| 黄色一级大片在线免费看国产| 狠狠爱在线视频一区| 欧美婷婷精品激情| 精品av久久久久电影| 人体精品一二三区| av网站在线观看免费| 色综合天天综合网国产成人综合天 | 久久国产乱子伦免费精品| 日本女优一区| 欧美风情在线观看| 亚洲国产精品无码久久久| 亚洲欧美视频一区| 精品中文字幕av| 欧美国产先锋| 国产suv精品一区二区三区88区 | 日韩欧美一区二区免费| 人妻丰满熟妇aⅴ无码| 韩国v欧美v日本v亚洲v| 欧美日韩成人一区二区三区| 国产aⅴ精品一区二区四区| 亚洲国产日韩欧美在线99| 五月天免费网站| 久久综合久久综合久久综合| 国产一区一区三区| 免费毛片在线不卡| 欧美肥婆姓交大片| 中文字幕乱码在线观看| 精品国产户外野外| 久久人人爽av| 国产日韩欧美一区| 亚洲最大成人在线| 色综合天天色| 日韩av最新在线观看| 成人免费黄色小视频| 日本一区二区三区在线观看| 草草视频在线免费观看| 综合久久亚洲| 国产精品日日摸夜夜添夜夜av| 婷婷色在线视频| 精品国产露脸精彩对白| 国产又粗又猛又爽又黄的视频小说| 91蜜桃在线免费视频| youjizz.com在线观看| 国产精品久久久久9999赢消| 国产97在线播放| 五月激情婷婷网| 日韩精品一区二区三区视频| 小泽玛利亚一区| 国产精品白丝在线| 免费看污污网站| 日韩国产欧美视频| 欧美日韩国产综合在线| 色老板在线视频一区二区| 欧美精品激情在线观看| 精品国自产在线观看| 欧美一级理论片| 欧美一级特黄高清视频| 国产精品久久久久久久浪潮网站| 日韩精品一区中文字幕| 老司机精品福利视频| 欧美久久久久久一卡四| 亚洲瘦老头同性70tv| 欧美一区二粉嫩精品国产一线天| 人妻少妇精品无码专区久久| 精品乱码亚洲一区二区不卡| 91成人福利视频| 亚洲乱码国产乱码精品精可以看 | 精品久久久久久中文字幕| 亚洲色图欧美另类| 97久久超碰国产精品电影| 你真棒插曲来救救我在线观看| 亚洲人成在线影院| 精品久久久久久综合日本 | 91免费精品| 成人综合国产精品| 日韩中文字幕| 欧美精品福利视频| 污视频在线免费观看| 亚洲色图25p| 中文字幕人妻精品一区| 制服.丝袜.亚洲.中文.综合| 中文字幕av免费在线观看| 亚洲一区视频在线| 欧类av怡春院| 久久久久国产精品麻豆ai换脸 | 国产精品av电影| 久久精品97| 欧美乱大交xxxxx| 天天摸天天干天天操| 国产午夜精品全部视频在线播放| 亚洲无码久久久久久久| 欧美成人vr18sexvr| 久草精品视频在线观看| 日本久久一区二区| 国产探花在线视频| 日韩网站中文字幕| 精品国产精品三级精品av网址| 亚洲激情视频小说| 国产精品美女久久久久久久久| 91视频福利网| 不卡一区二区三区四区| 国产视频一区二区三区在线播放 | 国产成人永久免费视频| 亚洲欧美日韩精品一区二区| 天天综合色天天综合色hd| 女同性一区二区三区人了人一| 九色综合婷婷综合| 久久久久久免费视频| 精品久久久久久一区| 国产精品久久久久无码av| 国产免费一区二区| 欧美电影一区| 精品国产一区二区三区四区vr | 91蝌蚪porny九色| 亚洲免费黄色录像| 91视频一区二区三区| 中文字幕亚洲乱码| 91毛片在线观看| 手机在线国产视频| 久久久午夜精品| 久草免费资源站| 国产精品免费久久| 国产偷人妻精品一区| 亚洲黄色小说网站| 精品亚洲aⅴ无码一区二区三区| 亚洲宅男天堂在线观看无病毒| 亚洲一区视频在线播放| 亚洲.国产.中文慕字在线| 成人性视频免费看| 91精品福利视频| 国产一级大片在线观看| 91精品国产欧美一区二区成人 | 91精品国产综合久久精品app| 特一级黄色大片| 日韩精品一区二区三区蜜臀| 最新在线中文字幕| 日韩久久精品电影| а√天堂资源在线| 粗暴蹂躏中文一区二区三区| 日本在线中文字幕一区二区三区 | 国产在线观看91精品一区| 国产成人3p视频免费观看| 国产精品国产精品国产专区不卡| 欧美激情偷拍自拍| 亚洲欧洲日韩精品| 日本成人在线一区| 欧美成人精品欧美一级乱| 99精品在线观看视频| 国产精品熟妇一区二区三区四区| 亚洲免费高清视频在线| 中文字幕91视频| 欧美日本一区二区在线观看| 日韩不卡视频在线| 日韩高清免费观看| 四季av日韩精品一区| 海角国产乱辈乱精品视频| 爱高潮www亚洲精品| 99国产视频| 影音先锋国产精品| 久久这里只有精品8| 国产91精品一区二区麻豆亚洲| 一级黄色片在线免费观看| 亚洲青青青在线视频| 搜索黄色一级片| 日韩一区二区三区电影 | 天天干视频在线| 97色在线播放视频| 免费观看久久av| 奇米视频888战线精品播放| 爽好久久久欧美精品| 人妻无码视频一区二区三区| 国产日韩av一区二区| 亚洲最大成人综合网| 欧美精品久久久久久久多人混战 | 久久av超碰| 日本欧洲国产一区二区| 免费在线观看视频一区| 香蕉视频禁止18| 综合久久一区二区三区| 欧美成人精品欧美一级| 欧美mv日韩mv国产网站app| 六月婷婷中文字幕| 欧美综合在线观看| 第一会所亚洲原创| 麻豆视频传媒入口| 成人综合婷婷国产精品久久蜜臀| 人妖粗暴刺激videos呻吟| 欧美性猛交xxxx乱大交蜜桃| 无码人妻黑人中文字幕| 精品激情国产视频| 91精品国产自产精品男人的天堂| 国产精品v欧美精品v日韩| 天堂在线一区二区| 手机免费av片| 亚洲国产视频网站| 岛国av中文字幕| 久久激情视频免费观看| 粉嫩av一区二区| 日韩av高清在线播放| 国产精品自拍毛片| 日韩 中文字幕| 欧美疯狂性受xxxxx喷水图片| 国产成人手机在线| 国产91色在线免费| 中出一区二区| 六月丁香婷婷激情| 亚洲视频狠狠干| 免费黄色网址在线| 九九热这里只有精品6|