欧美福利在线播放_免费在线观看羞羞视频_加勒比色老久久爱综合网_性一交一乱一区二区洋洋av_国产麻豆麻豆_国产精品一线天粉嫩av_国产精品天美传媒入口_午夜a一级毛片亚洲欧洲_精品久久久久久久大神国产_四虎影视在线播放

課程目錄: 大數(shù)據(jù)新興技術(shù)培訓(xùn)

4401 人關(guān)注
(78637/99817)
課程大綱:

大數(shù)據(jù)新興技術(shù)培訓(xùn)

 

 

 

Big Data Rankings & Products

The first module “Big Data Rankings & Products” focuses on the relation and market shares of big data hardware,

software, and professional services. This information provides an insight to how future industry,

products, services, schools, and government organizations will be influenced by big data technology.

To have a deeper view into the world’s top big data products line and service types,

the lecture provides an overview on the major big data company, which include IBM, SAP,

Oracle, HPE, Splunk, Dell, Teradata, Microsoft, Cisco, and AWS. In order to understand the power of big data technology,

the difference of big data analysis compared to traditional data analysis is explained.

This is followed by a lecture on the 4 V big challenges of big data technology,

which deal with issues in the volume, variety, velocity, and veracity of the massive data.

Based on this introduction information, big data technology used in adding global insights

on investments, help locate new stores and factories,

and run real-time recommendation systems by Wal-Mart, Amazon, and Citibank is introduced.

Big Data & Hadoop

The second module “Big Data & Hadoop” focuses on the characteristics and operations of Hadoop,

which is the original big data system that was used by Google.

The lectures explain the functionality of MapReduce,

HDFS (Hadoop Distributed FileSystem), and the processing of data blocks.

These functions are executed on a cluster of nodes that are assigned the role of NameNode or DataNodes,

where the data processing is conducted by the JobTracker and TaskTrackers,

which are explained in the lectures. In addition,

the characteristics of metadata types and the differences

in the data analysis processes of Hadoop and SQL (Structured Query Language) are explained.

Then the Hadoop Release Series is introduced which include the descriptions of Hadoop YARN (Yet Another Resource Negotiator),

HDFS Federation, and HDFS HA (High Availability) big data technology.

Spark

The third module “Spark” focuses on the operations and characteristics of Spark,

which is currently the most popular big data technology in the world.

The lecture first covers the differences in data analysis characteristics of Spark and Hadoop,

then goes into the features of Spark big data processing based on the RDD (Resilient Distributed Datasets),

Spark Core, Spark SQL, Spark Streaming, MLlib (Machine Learning Library), and GraphX core units.

Details of the features of Spark DAG (Directed Acyclic Graph) stages and pipeline processes

that are formed based on Spark transformations and actions are explained. Especially,

the definition and advantages of lazy transformations and DAG operations are described along with

the characteristics of Spark variables and serialization.

In addition, the process of Spark cluster operations based on Mesos, Standalone, and YARN are introduced.

Spark ML & Streaming

The fourth module “Spark ML & Streaming” focuses on how Spark ML (Machine Learning)

works and how Spark streaming operations are conducted.

The Spark ML algorithms include featurization, pipelines,

persistence, and utilities which operate on the RDDs (Resilient Distributed Datasets) to extract information form the massive datasets.

The lectures explain the characteristics of the DataFrame-based API,

which is the primary ML API in the spark.ml package.

Spark ML basic statistics algorithms based on correlation and hypothesis testing (P-value)

are first introduced followed by the Spark ML classification and regression algorithms based

on linear models, naive Bayes, and decision tree techniques. Then the characteristics of Spark streaming,

streaming input and output, as well as streaming receiver types (which include basic, custom,

and advanced) are explained, followed by how the Spark Streaming process

and DStream (Discretized Stream) enable big data streaming operations for real-time and near-real-time applications.

Storm

The fifth module “Storm” focuses on the characteristics and operations of Storm big data systems.

The lecture first covers the differences in data analysis characteristics of Storm,

Spark, and Hadoop technology. Then the features of Storm big data processing based on the nimbus,

spouts, and bolts are described followed by the Storm streams, supervisor, and ZooKeeper details.

Further details on Storm reliable and unreliable spouts and bolts are provided followed

by the advantages of Storm DAG (Directed Acyclic Graph) and data stream queue management.

In addition, the advantages of using Storm based fast real-time applications, which include real-time analytics,

online ML (Machine Learning), continuous computation,

DRPC (Distributed Remote Procedure Call), and ETL (Extract, Transform, Load) are introduced.

IBM SPSS Statistics Project

The sixth and last module “IBM SPSS Statistics Project” focuses on providing experience

on one of the most famous and widely used big data statistical analysis systems in the world. First,

the lecture starts with how to setup and use IBM SPSS Statistics, and continues

on to describe how IBM SPSS Statistics can be used to gain corporate data analysis experience.

Then the data processing statistical results of two projects based on using the IBM SPSS Statistics big data system is conducted.

The projects are conducted so the student can discover new ways to use,

analyze, and draw charts of the relationship between datasets,

and also compare the statistical results using IBM SPSS Statistics.


 

色综合久久88色综合天天免费| 99精品视频精品精品视频| 成人免费高清视频在线观看| 精品福利在线导航| 欧美极品jizzhd欧美| 后入内射无码人妻一区| 99亚洲乱人伦aⅴ精品| 91年精品国产| 日韩一区二区福利| 国产人妻777人伦精品hd| 色老头一区二区| 亚洲视频电影在线| 欧美午夜性色大片在线观看| 成人免费淫片视频软件| 亚洲国产果冻传媒av在线观看| 日韩精品影片| 国产99久久久精品| 亚洲图片欧洲图片av| 日韩人妻精品一区二区三区| 日本中文字幕在线| 国产精品地址| 欧美日韩一区二区三区高清| 国产一区二区高清不卡| 午夜激情视频在线播放| 香蕉久久99| 一个色在线综合| 国产精品丝袜久久久久久不卡| www.555国产精品免费| 久久精品国产精品亚洲毛片| 97成人超碰视| 欧美大尺度激情区在线播放| 亚洲欧美国产一本综合首页| 精品国产一区二区三区久久久蜜月| 精品卡一卡二| 日韩一区二区三区四区在线| 国产成人影院| 午夜伦欧美伦电影理论片| 国产欧美婷婷中文| 亚洲精品色午夜无码专区日韩| 岛国精品一区| 亚洲精品视频自拍| 91精品久久久久久久久久 | www.精品| 91小视频免费观看| 久久久久久久久91| 手机看片国产精品| 国产精品一区二区精品| 国产精品你懂的在线| 日本精品视频在线观看| 日本三级日本三级日本三级极| 视频精品国内| 亚洲美女淫视频| 国产主播喷水一区二区| www.xx日本| 97视频热人人精品免费| 欧美日韩免费在线视频| 亚洲最大色综合成人av| 天天天天天天天干| 青娱乐精品视频| 影音先锋欧美精品| 538任你躁在线精品免费| 国产一区二区精品调教| 久久精品在线观看| 国产成人综合精品在线| 免费看91的网站| 热久久天天拍国产| 欧美三级三级三级| 伊人久久大香线蕉成人综合网| 一级黄色大片免费| 狠狠色丁香九九婷婷综合五月 | 精品国产伦一区二区三| 国产一区二区三区香蕉| 久久av红桃一区二区小说| 国产乱码一区二区三区四区| 国产精品高清一区二区| 一级精品视频在线观看宜春院 | 最新中文字幕在线播放| 久久综合九色综合97婷婷女人 | 国产三级国产精品| 国语产色综合| 欧美日韩国产成人在线免费| 国产精品88久久久久久妇女 | 精品亚洲aⅴ在线观看| 妺妺窝人体色www在线观看| 久久91视频| 一区二区三区四区激情| 久久涩涩网站| 中文字幕观看视频| 国产高清一区日本| 8x海外华人永久免费日韩内陆视频| 欧美xxxx×黑人性爽| 欧美精品尤物在线观看| 日韩精品一区国产麻豆| 欧美日韩在线中文| 国产精品一区二区精品| 亚洲.国产.中文慕字在线| 免费试看一区| 国产美女三级无套内谢| www.成人网.com| 国产精品自拍视频| 日本少妇做爰全过程毛片| 日本三级亚洲精品| 欧美激情女人20p| 国产精品国产三级国产专业不 | 久久99久久精品国产| 自拍偷拍精品视频| 成人av在线播放网站| 国产精品一区专区欧美日韩| 五月天婷婷丁香| 久久99国内精品| 69国产精品成人在线播放| 美国美女黄色片| 夜久久久久久| 久久亚洲精品视频| wwwwww日本| 欧美亚洲不卡| 日韩在线中文字| 波多野结衣办公室33分钟| 久久久久午夜电影| 亚洲天堂男人天堂| 午夜剧场免费看| 一区二区三区午夜视频| 亚洲天堂av女优| 黄色av网址在线观看| 亚洲国产老妈| 上原亚衣av一区二区三区| 亚洲成人日韩在线| 精品69视频一区二区三区Q| 爽爽爽爽爽爽爽成人免费观看| 国产精品九九视频| 亚洲视频一区| 欧美成人精品激情在线观看| 中文字幕伦理片| 久久精品电影| 欧美一级在线播放| 男人天堂中文字幕| 福利一区福利二区| 91九色蝌蚪嫩草| 国产美女明星三级做爰| 国产精品福利一区| 亚洲乱码一区二区三区| 99蜜月精品久久91| 色偷偷久久人人79超碰人人澡 | 在线观看欧美日韩电影| 午夜欧美在线一二页| 久久久久久久香蕉| 91精品丝袜国产高跟在线| 欧美一区二区三区思思人| 在线看的黄色网址| 久久激情电影| 日韩在线视频国产| 韩国一级黄色录像| 精品一区中文字幕| 91久久久精品| 国产人妖在线播放| 一区二区欧美精品| 日本男女交配视频| 国产ts一区| 亚洲国产成人91精品| 污片免费在线观看| 久久精品一区| 国产精品视频永久免费播放| 中文字幕一级片| 亚洲人午夜精品天堂一二香蕉| 日本黄色a视频| 欧美黄视频在线观看| 日韩欧美黄色影院| 久久久高清视频| 国产精品日本| 国产精品高清在线观看| 在线观看视频二区| 亚洲另类中文字| 久草视频国产在线| 亚洲肉体裸体xxxx137| 亚洲一级黄色av| 小嫩苞一区二区三区| 国产成人免费av在线| 久久久com| 日韩久久一区| 欧美tickling网站挠脚心| 特级西西人体4444xxxx| 日韩激情在线观看| 91深夜福利视频| 黄色av网址在线| 在线亚洲一区二区| 精品国产午夜福利在线观看| 在线免费观看欧美| 国产精品久久久久久久久久久新郎| 怡红院成永久免费人全部视频| 亚洲欧美日韩在线不卡| www插插插无码视频网站| 久久99久久人婷婷精品综合 | 免费看黄网站在线观看| 91国偷自产一区二区开放时间| 天天干天天玩天天操| 亚洲清纯自拍| 国产精品视频大全| 国产91绿帽单男绿奴| 91久久人澡人人添人人爽欧美 | 精品国产一区二| 亚洲精品美女久久| 自拍偷拍第9页| 91最新地址在线播放| 亚洲三区视频| 婷婷国产精品| 久久国产精品网站| 无码人妻丰满熟妇精品区| 亚洲一区二区三区视频在线播放| 日本一本二本在线观看| 综合久久99| 国产精品一区二区三| 欧美视频在线观看一区二区三区| 欧美日免费三级在线| 精品一区二区三区四区五区六区| 老司机午夜精品| 久久av免费观看| 综合伊人久久| 久久国产一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲资源在线观看| 日韩欧美亚洲另类| 日韩中文字幕区一区有砖一区 | 亚洲欧美日韩国产中文| 麻豆91精品91久久久| 国产精品女主播在线观看| 国产二区视频在线播放| 欧美在线首页| 91精品免费看| 粉嫩av一区二区三区四区五区| 亚洲精品国精品久久99热 | 亚洲精品久久久久久久蜜桃臀| 91欧美大片| 国产精品视频xxxx| 日韩成人亚洲| 亚洲欧美中文另类| 91视频免费网址| 天天影视涩香欲综合网| 亚洲熟女一区二区三区| 国产成人精品影视| 永久免费看av| 午夜精品999| 亚洲sss综合天堂久久| 欧美天堂在线| 日韩视频永久免费观看| 夜夜骚av一区二区三区| 欧美日韩色综合| 91视频免费看片| 国产精品成人一区二区艾草 | av动漫在线观看| 国产精品久久久久9999高清| 国产区一区二区| 久本草在线中文字幕亚洲| 欧美激情欧美狂野欧美精品| 国产高清不卡视频| 日韩免费成人网| 精品无码免费视频| 午夜影院久久久| 无码人妻aⅴ一区二区三区| 91亚洲精品久久久蜜桃网站 | 精品久久久久久久久国产字幕| 色婷婷狠狠18禁久久| 国产不卡视频在线观看| 久久男人资源站| 亚洲一区不卡| 日产精品久久久一区二区| 青草国产精品| 91美女高潮出水| 豆花视频一区二区| 4438全国亚洲精品在线观看视频| 国产超碰精品| 主播福利视频一区| 国产精品无码在线播放| 亚洲成人av片| 亚洲av无码不卡| 欧美精品久久一区| 精品少妇爆乳无码av无码专区| 精品久久久久久亚洲精品| www.av天天| 亚洲猫色日本管| 亚洲国产精品无码久久久久高潮| 久久九九久久九九| 亚洲图片 自拍偷拍| 不卡视频在线看| 男人搞女人网站| 国产精品中文字幕日韩精品| 欧美视频在线观看网站| 免费成人在线观看视频| 青青青青在线视频| 日韩中文字幕区一区有砖一区| 中文字幕中文字幕在线中心一区| 精品动漫一区| 亚洲欧美日产图| 激情综合网址| 亚洲成人网上| 日韩视频在线一区二区三区| 一区二区不卡在线| 亚洲深夜影院| 中文字幕一区二区三区在线乱码 | 日韩精品一区二区在线视频| 天堂影院一区二区| 一二三四中文字幕| 日产国产高清一区二区三区| 国产尤物av一区二区三区| 日韩avvvv在线播放| 国产欧美日韩小视频| 美女在线一区二区| 国产免费观看高清视频| 国模大尺度一区二区三区| 真人抽搐一进一出视频| 精品在线一区二区| 久久精品午夜福利| 成人黄色小视频在线观看| 久久久精品高清| 国产欧美视频一区二区三区| 97人妻精品一区二区三区免费| 中文字幕在线不卡| 在线不卡av电影| 五月综合激情日本mⅴ| 日日噜噜夜夜狠狠久久波多野| 欧美性开放视频| 精品在线视频免费| 欧美一级国产精品| 中文字幕一区二区人妻痴汉电车| 日韩hd视频在线观看| 成人激情四射网| 久久夜色撩人精品| 精品久久久网| 国产精品久久久久蜜臀 | 精品人妻无码一区二区| 一区二区三区黄色| 亚洲精品97久久中文字幕无码| 中文字幕亚洲综合| 色豆豆成人网| 日韩av片永久免费网站| 人人精品亚洲| 韩国成人动漫在线观看| 欧美日韩国产亚洲一区| 成年丰满熟妇午夜免费视频| 国内精品第一页| 99热一区二区| 国产精品福利一区二区三区| 日韩视频在线观看免费视频| 色哟哟一区二区| www亚洲视频| 日韩精品中文字幕久久臀| 日本免费网站在线观看| 高清欧美性猛交xxxx| 超碰成人97| 国产亚洲一区二区三区在线播放| 国模吧视频一区| 亚洲理论电影在线观看| 波多野结衣亚洲一区| 艳妇乳肉豪妇荡乳xxx| 天天射综合影视| 91美女免费看| 国产亚洲美女精品久久久| 精品视频在线一区二区在线| 国产精品成人播放| 色777狠狠狠综合伊人| 亚洲一区二区免费视频软件合集 | 欧美亚洲黄色| 成人激情免费在线| 亚洲影视一区| 路边理发店露脸熟妇泻火| 国产suv精品一区二区6| 国产极品一区二区| 91久久精品一区二区| 夜夜狠狠擅视频| 久99九色视频在线观看| 欧美成人专区| 色乱码一区二区三在线看| 精品一区二区三区影院在线午夜| 亚洲一区二区三区观看| 亚洲亚洲人成综合网络| av大片在线免费观看| 最近2019中文字幕一页二页| 精品中文字幕一区二区三区| 国产精品视频福利| 快she精品国产999| 红桃视频 国产| 亚洲国产精品久久久久秋霞影院| 亚洲男人的天堂在线视频| 一区二区av在线| 亚洲精品观看| 久久综合伊人77777麻豆| 精品一区二区三区免费播放| 免费黄视频在线观看| 一本一道久久a久久精品 | 国产精品久久久久久久久久久新郎| 日韩美女一区二区三区在线观看| 91社在线播放| 97精品久久久久中文字幕| 免费在线观看a视频| 日韩免费高清视频| yw.尤物在线精品视频| 国产精品欧美久久| 麻豆视频一区二区| 理论片大全免费理伦片| 欧美日韩国产综合视频在线观看 | 欧美日本一区|